Musical instrument recordings made with a fiber Fabry-Perot cavity: photonic guitar pickup.

نویسندگان

  • Nicholas Ballard
  • Daniel Paz-Soldan
  • Peter Kung
  • Hans-Peter Loock
چکیده

A 1 cm long, low-finesse fiber-optic cavity was used as a transducer for the vibrations of the soundboard of an acoustic guitar and of a violin. The reflected light is detected and then amplified and recorded using conventional audio instrumentation. The fiber-optic pickup is found to have a high response range in both amplitude (up to 100 microm displacement) and audio frequency (DC to 20 kHz) and good linearity up to a displacement of 225 microm. The audio noise is found to arise from the fiber-optic cables and, to a lesser extent, from the laser and laser driver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recording the sound of musical instruments with FBGs: the photonic pickup.

Fiber Bragg gratings (FBGs) have previously found many applications as strain and vibration sensors. Here we demonstrate that they may also be employed as pickups for musical instruments and, specifically, for acoustic guitars and solid-body electric guitars. By fixing the FBG to a vibrating part of the instrument's body, e.g., near the bridge of an acoustic guitar or on the headstock of a soli...

متن کامل

High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber.

A fiber-optic Fabry-Perot interferometer was constructed by splicing a short length of photonic crystal fiber to a standard single-mode fiber. The photonic crystal fiber functions as a Fabry-Perot cavity and serves as a direct sensing probe without any additional components. Its pressure and temperature responses in the range of 0-40 MPa and 25°C-700°C were experimentally studied. The proposed ...

متن کامل

Fabry-Perot Interferometric High-Temperature Sensing Up to 1200 °C Based on a Silica Glass Photonic Crystal Fiber

A Fabry-Perot interferometric sensor for temperature measurement was fabricated based on a silica glass solid-core photonic crystal fiber with a central air-bore. By splicing a stub of photonic crystal fiber to a standard single-mode fiber, an intrinsic Fabry-Perot cavity was formed inside the photonic crystal fiber. Sensing experiment results show that the sensor can work stably for a consecut...

متن کامل

Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers.

Photonic bandgap fibers for transverse illumination containing half-wavelength microcavities have recently been designed and fabricated. We report on the fabrication and characterization of an all-optical tunable microcavity fiber. The fiber is made by incorporating a photorefractive material inside a Fabry-Perot cavity structure with a quality factor Q >200 operating at 1.5 microm. Under short...

متن کامل

Design of Optical Fiber Fabry-Perot Sensors Based on Intensity and Phase with Parallel Processing

For fiber Fabry-Perot sensor vulnerable to external parameters such as electromagnetic, noise and displacement impact, reducing the problem resilience, research and design new fiber Fabry-Perot sensor with parallel processing capabilities based on the intensity and phase of perception. First, according to various types of external parameters and the degree of interference, established the inten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 49 11  شماره 

صفحات  -

تاریخ انتشار 2010